MELTING OF A SEMIINFINITE STEEL BODY IN
AN IRON - CARBON ALLOY

F. N. Lisin and A. 8. Nevskii UDC 536 .421.1

Melting of a semiinfinite steel body in an iron—carbon alloy is considered. A solution is
derived for equations of heat and mass exchange which are obtained by means of the inte-
gral Laplace transform.

The process of melting of steel scrap which takes place in open hearth furnaces and in converters is
little studied at the present time. The peculiarity of this process is that owing to the carburization the
solid metal becomes liquid at a temperature which is much lower than its melting temperature. In[1, 2]
the transition process of the steel scrapintoaliquid state is considered purely as a diffusion process. How-
ever, the authors of [4]note that the actual rate of this process applied to molybdenum is 3-4 orders higher
than according to the calculations based on the diffusion theory. In [3, 5, and 6] the process of transition
of the steel into a liquid state in markedly carburizing melts is considered as melting with simultaneous
progressing of the carbon diffusion process from the melt to the surface of the metal, which results in the
reduction of the melting temperature of its surface. Hence the linear rate of melting depends on both the
intensity of the diffusion of the carbon from the melt to the surface of the scrap and hence also on the heat
exchange between the liquid and solid phases.

The melting of the semiinfinite steel body in the liquid iron—carbon alloy is considered below. Melt-
ing and heating of the body ‘take place as a result of convective heat exchange between the molten material
and the surface of the body. The process of carburization of the body proceeds as a parallel process. It
is assumed that at each instant of time the temperature of the external layer is determined by the liquidus
line of the iron—carbon composition diagram. The indicated process is described by the following system
of equations:

oT 0T
aT:aﬁ, E(T)<x<°l°v 1
€ _ &C 2
é?—:Da;, E(T) Cx<C oo, @
with the initial and boundary conditions
dt (1) or
T —T)=1yg =+ —& —, x=E(1), 3
@l =T =19 = oo AW 3)
dE (1) ac -
BCH—C) == (€, —C)—D =, x= (), )
QI =0, X— oo, (5)
Ox
% =0, x-»o0, (6}
O0x
T (x; 0) =0, (M
C(x; 0) = C,. (8)

The values of Ty, and C, are considered as constant withtime.
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The equation of the liquidus line of the iron—carbon diagram is written in the form
T, = T4~ m (C; —Cy), (9)

Where T%V[ is the temperature of the liguidus at the concentration Cy; m is the factor determining the
increase of the temperature of the system on reducing the concentration by 1%.

The established problem (1) to (8) is related to the class of problems which are called the Stefan
problem in the specialist literature. For such problems the temperature field is continuous, butthe tem~
perature gradient undergoes a discontinuity which makes this problem a nonlinear one with a weak discon-
tinuity on the boundary.

We will divide the time of the melting into such small intervals A7y = (7] .4 — 7;) that the rate of the
progress of the melting front at that interval of time can be taken as constant: d§/dr = £ = const, Calcula~
tions carried out by I. V. Belov [6] showed that as a result of the small magnitude of the diffusion coeffi-
cient D of carbon in the solid phase, and the sufficiently high rates of travel of the boundary, the distribu-
tion of the concentration in the body is very little dependent on the rate of movement of the boundary and it
will remain practically the same as for the initial interval of time A7y,

In connection with this,in order to find the distribution of concentration it is possible to take advantage
of the known solution of E. M. Gol'dfarb [7], which is obtained for the case of melting of a semiinfinite body
at constant melting rate:
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On substituting (11) into Eq. (4) we will find the value of the concentration Cg of the carbon in the sur-
face layer
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In order to establish the temperature field in the interval A7; we will introduce a moving system of
coordinates relative to which the front of melting is stationary:
z:x—-«%i’c; T="T.

The equation of thermal conduetivity (1) in such a system of calculations has the form of a "convec-
tion" equation:
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We note that in the instant of time v = 0 the temperature on the surface of the body rises with a jump
to melting temperature Tgq.

By using the Laplace integral transform
Fpy= { ) exp(—pr) dr, (15)
0

we obtain in the representation
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with conditions
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The solution of (16) is of the form
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+ -~ is the root of the characteristic equation,

On transition from the representatlons to originals by means of the tables [8], we find in the moving
system of the calculation:
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and in the stationary system of calculation
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The values of the temperatures of melting will be found, by substituting Cg into (9)
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The value of £ can be found by using expressions (3), (20), and (21)
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The average value of the rate of meliting is given by:
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The solution obtained characterizes the dynamics of the progress of the melting process for noniso-

thermal conditions. Both the phenomenon of heat transfer, and the diffusion from the melt to the surface
of the melting body are studied. The formulae obtained make it possible to determine the rate of melting
successively for separate intervals of time, starting with the first. The average rate of melting after time
T is determined by the formula (23).

NOTATION

is the thermal diffusivity;

is the thermal conductivity;

is the diffusivity;

are the heat and mass transfer coefficients respectively;
is the melting temperature of surface layer;

is the movable boundary coordinate;

Tm, Cm  are the temperature and concentration in the melt.
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